Preclinical Evaluation of Cudetaxestat (BLD-0409) for Potential Drug-Drug Interactions (DDI's)

Walter Yu, Ravi Rajagopalan, Jack Lin, and Prabha Ibrahim Blade Therapeutics, Inc., South San Francisco, CA 94080, USA

Abstract

Cudetaxestat (BLD-0409) is an oral small molecule targeting the enzyme autotaxin (ATX) by noncompetitve inhibition. ATX is a secreted enzyme that produces most of the lysophosphatidic acid (LPA). Increased ATX activity and excessive LPA production cause multiple adverse pathophysiologic phenomenon including myofibroblast activation. Activated myofibroblasts secrete extracellular matrix proteins which aggregate into fibrotic lesions. In preclinical studies, cudetaxestat demonstrated direct anti-fibrotic activity and differentiating biochemical characteristics.

Blade is developing cudetaxestat as an oral treatment for fibrosis. Cudetaxestat will be studied as an oral therapeutic for patients with idiopathic pulmonary fibrosis (IPF). Cudetaxestat is intended to be dosed with or without concomitant administration with approved therapies (pirfenidone and nintedanib). Pirfenidone and nintedanib are known to have safety and tolerability issues so understanding potential drug-drug interactions with either medication is important. Recently, Phase 3 IPF trials with ziritaxestat (GLPG-1690), an investigational competitive ATX inhibitor, was halted due to its unfavorable benefit-risk profile. To better understand potential DDIs, we evaluated cudetaxestat and ziritaxestat preclinical in vitro and in vivo assays to assess potential interactions with nintedanib and pirfenidone

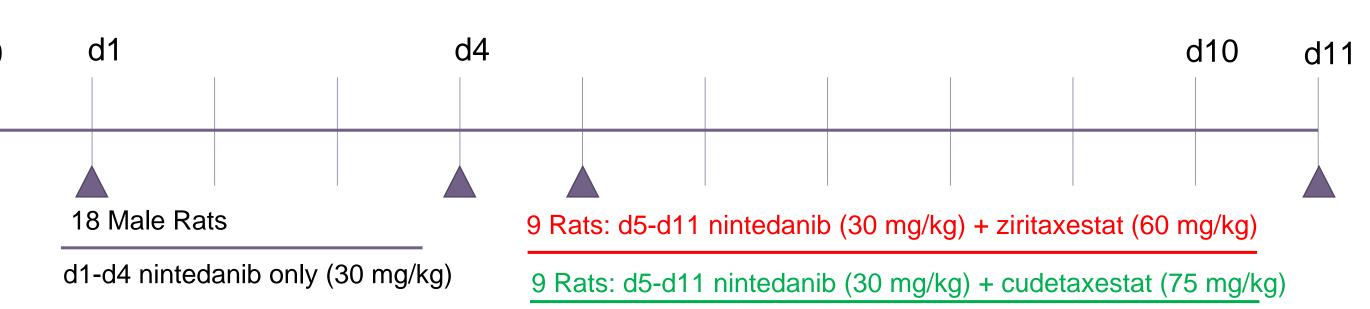
Nintedanib is a known P-Glycoprotein (P-gp) substrate while pirfenidone is not. Standard in vitro assay with MDCK-II cells showed that cudetaxestat was not a substrate and was a weak inhibitor (IC₅₀=64.6 μ M and 39.8 μ M using quinidine and nintedanib as substrates, respectively). In contrast, ziritaxestat was found to be a substrate and an inhibitor of P-gp (IC₅₀ of 7.77 μ M and 3.84 μ M using quinidine and nintedanib as substrates, respectively).

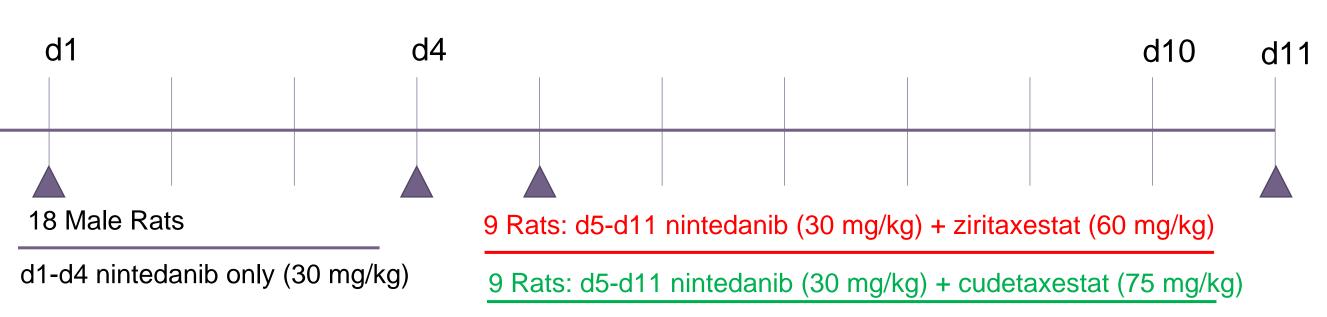
In vivo studies with nintedanib, ziritaxestat and cudetaxestat were performed in rats. Plasma exposures of drugs were quantified and compared. Cudetaxestat co-administration with nintedanib did not change nintedanib exposure. However, ziritaxestat co-administration with nintedanib resulted in statistically significant increase of nintedanib exposures; maximum plasma concentration (C_{max}) increased \geq 1.8-fold and area under curve (AUC) increased \geq 2.8-fold.

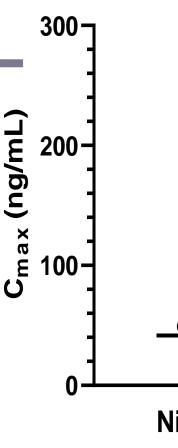
Cudetaxestat was neither a substrate nor an inhibitor of P-gp at physiologically relevant concentrations. No significant change in plasma concentration of nintedanib was observed when cudetaxestat was co-administered in rats.

Current Standard of Care Therapies for IPF

Pirfenidone and nintedanib were approved by the US FDA to treat IPF in 2014 and remain the only approved pharmacologic therapies. While both were approved for slowing the decline in FVC by 40 – 60% vs. placebo in pivotal studies, even responsive patients continue to exhibit continued disease progression. Both agents are also associated with significant side effects. Thus, there remains a critical need for more effective and better tolerated therapies in IPF.

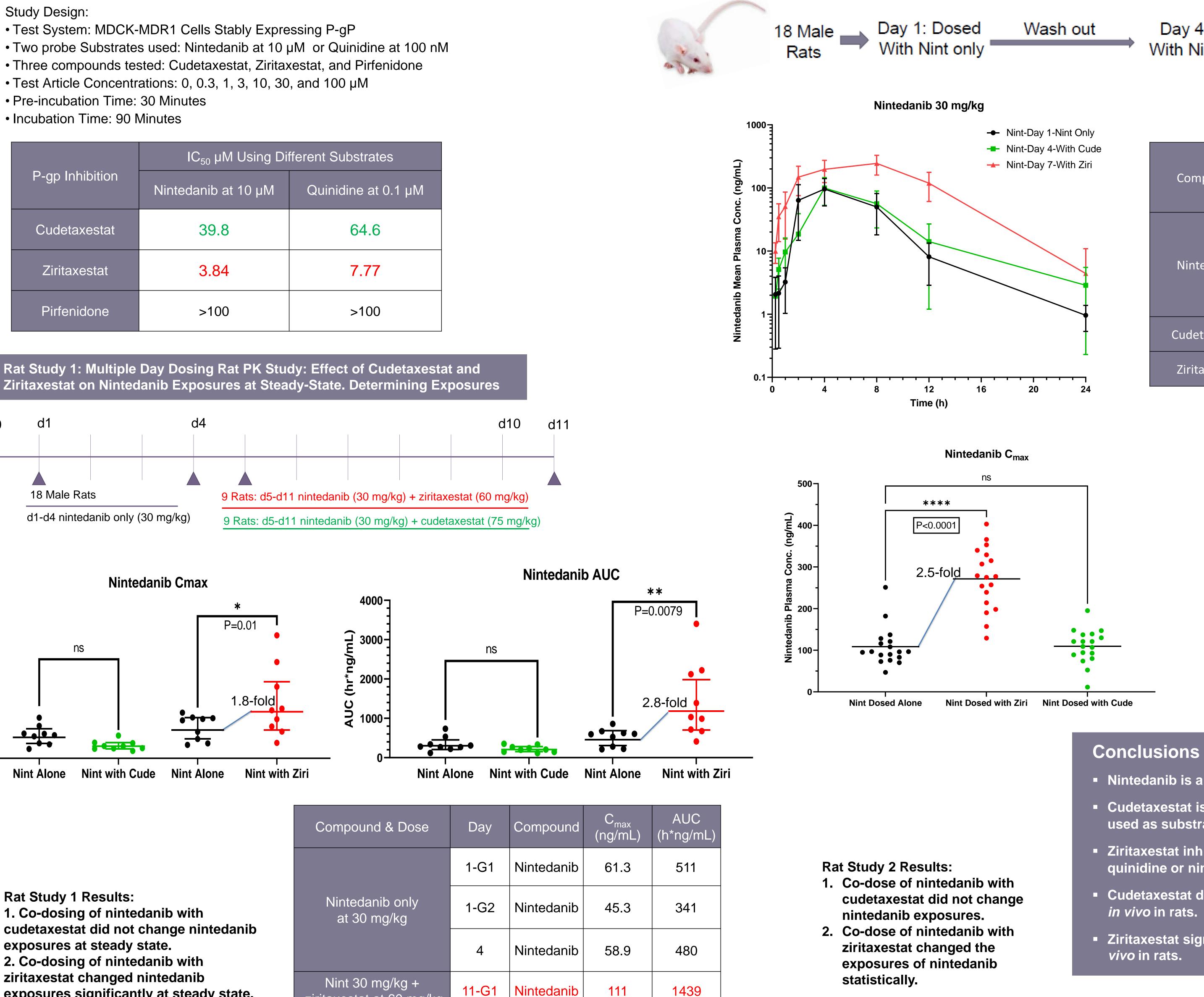

Autotaxin Inhibition as an IPF Therapy


The competitive ATX inhibitor, ziritaxestat, was previously being developed in IPF by Galapagos NV. A small Phase 2a monotherapy study (FLORA) suggested potential FVC benefit after 12 weeks of treatment with no significant side effects. Subsequently, two concurrent Phase 3 studies (ISABELA 1 & 2) were initiated to assess treatment with ziritaxestat in combination with SOC (i.e., pirfenidone or nintedanib). Both studies were discontinued due to a poor risk-benefit profile. While data from those studies have not yet been published in a peer-reviewed medical journal, Galapagos has stated that it did not appear to be target related.


In this context, reported here is a systematic preclinical assessment of potential for DDI of both cudetaxestat and ziritaxestat with IPF SOC therapy.

- Incubation Time: 90 Minutes

Day Compound & Dose 1-G1 Nintedanib Rat Study 1 Results: Nintedanib only 1-G2 Nintedanib 1. Co-dosing of nintedanib with at 30 mg/kg cudetaxestat did not change nintedanib exposures at steady state. Nintedanib 4 2. Co-dosing of nintedanib with ziritaxestat changed nintedanib Nint 30 mg/kg + 11-G1 Nintedanib exposures significantly at steady state. ziritaxestat at 60 mg/kg Nint 30 mg/kg + 11-G2 Nintedanib Cudetaxestat at 75 mg/kg


In Vitro Inhibition of P-Glycoprotein

Study Design:

- Two probe Substrates used: Nintedanib at 10 µM or Quinidine at 100 nM
- Pre-incubation Time: 30 Minutes

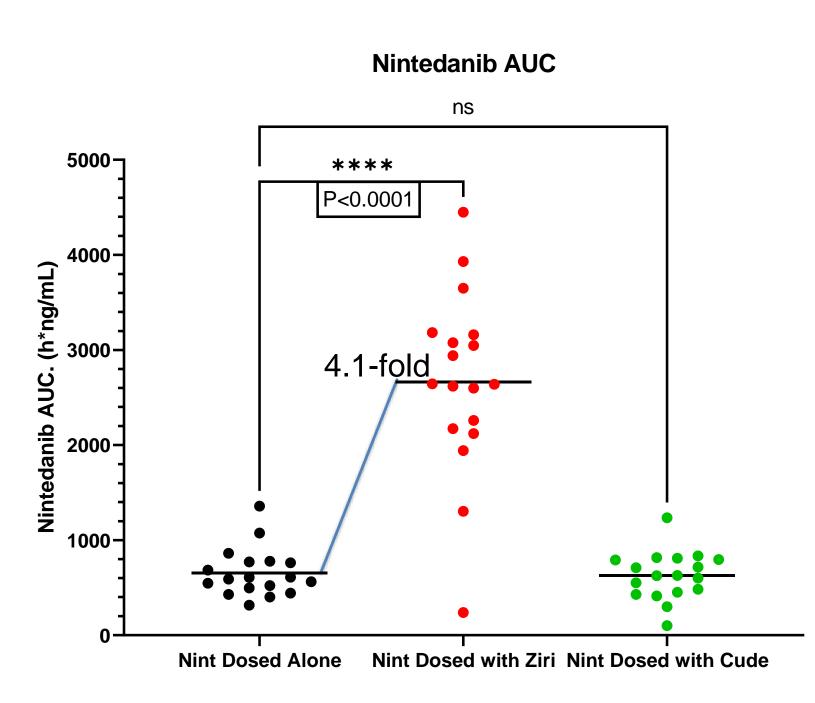
P-gp Inhibition	IC ₅₀ µM Using Different Substrates			
	Nintedanib at 10 µM	Quinidine at 0.1 µM		
Cudetaxestat	39.8	64.6		
Ziritaxestat	3.84	7.77		
Pirfenidone	>100	>100		

Rat Study 1: Multiple Day Dosing Rat PK Study: Effect of Cudetaxestat and Ziritaxestat on Nintedanib Exposures at Steady-State. Determining Exposures

25.3

223

Rat Study 2: Single Dose PK Study using 18 Rats for statistical Analysis


Reprint Requests: <u>wyu@blademed.com</u> Walter Yu, Ravi Rajagopalan, Jack Lin, and Prabha Ibrahim are employees and shareholders of Blade Therapeutics, Inc.

American Thoracic Society 2022 International Conference San Francisco 5276/B36

Day 4: Dosed	Wash out	Day 7: Dosed 📂 End
Vith Nint + Cude		With Nint + Ziri

Compound	Description	C _{max} (ng/mL)		AUC _{last} (h*ng/mL)	
		Mean	%CV	Mean	%CV
Nintedanib	Day 1: Dosed alone	109	43	656	39
	Day 4: Dosed with Cude	109	38	628	40
	Day 7: Dosed with Ziri	271	27	2670	36
Cudetaxestat	Day 4: Co-dosed with Nint	111000	16	1630000	15
Ziritaxestat	Day 7: Co-dosed with Nint	19200	18	182000	37

Nintedanib is a P-gp substrate.

Cudetaxestat is a weak P-gp inhibitor when either quinidine or nintedanib is used as substrate.

Ziritaxestat inhibits P-gp with single digit micromolar IC₅₀ values when either quinidine or nintedanib is used as substrate.

Cudetaxestat does not significantly alter nintedanib exposure when co-dosed

Ziritaxestat significantly increased nintedanib exposure when co-dosed in